GAMLSS Practicals for Semana de Estatistica -
Universidade Federal do Rio Grande do Norte

Fernanda De Bastiani, Mikis D. Stasinopoulos,
Robert A. Rigby, and Gillian Z. Heller

October 21st and 22nd, 2019

1 The Munich rent data.

Use the code below to reproduce the analysis of the Munich rent data given in the lecture
”Flexible Regression and Smoothing: Using GAMLSS in R”.

library(gamlss)

PPP <- par(mfrow=c(2,2))

plot(R"F1l, data=rent, col=gray(@.7), pch=15, cex=0.5)
plot(R"A, data=rent, col=gray(0.7), pch=15, cex=0.5)
plot(R"H, data=rent, col=gray(@.7), pch=15, cex=0.5)
plot(R"1loc, data=rent, col=gray(@.7), pch=15, cex=0.5)
par (PPP)

r1 <- gamlss(R ~ Fl+A+H+loc, family=NO, data=rent, trace=FALSE)
11 <- Im(R ~ Fl+A+H+loc,data=rent)

coef(ri)

coef(11)

fitted(r1, "sigma”)[1]
summary(ri1)

Rsq(r1)

plot(ri1)

r2 <- gamlss(R ~ Fl+A+H+loc, family=GA, data=rent)
coef(r2)

coef(r2, "sigma")

deviance(r2)

12 <- glm(R ~ Fl+A+H+loc, family=Gamma(link="log"), data=rent)
coef(12)

summary(12)$dispersion #i## extract phi

deviance(12)

I i e R e e
summary(r2)

T e e R R e e e
r22 <- gamlss(R ~ Fl+A+H+loc, family=IG, data=rent, trace=FALSE)
GAIC(r1, r2, r22, k=0) # GD

B — o

plot(r2)

R e e L R e

r3 <- gamlss(R ~ pb(F1)+pb(A)+H+loc, family=GA, data=rent,
trace=FALSE)

AIC(r2,r3)

B — o

summary (r3)

e e e

drop1(r3)

et R

term.plot(r3, pages=1, ask=FALSE)

e e e LR e

wp(r3, ylim.all=.6)

B — o

r4 <- gamlss(R ~ pb(F1)+pb(A)+H+loc, sigma.fo="pb(F1l)+pb(A)+H+loc,
family=GA, data=rent, trace=FALSE)

r5 <- gamlss(R ~ pb(F1)+pb(A)+H+loc, sigma.fo="pb(F1)+pb(A)+H+loc,
family=IG, data=rent, trace=FALSE)

AIC(r3, r4, r5)

R D e O e s O O e S SO CD—T—

term.plot(r4, pages=1, what="sigma"”, ask=FALSE)

I e e e aaie

drop1(r4, what="sigma")

R O O o O O O O o O S SOOI oe—

wp(r4, ylim.all=.6)

T e R e e

ré <- gamlss(R ~ pb(Fl1)+pb(A)+H+loc, sigma.fo="pb(F1)+pb(A)+H+loc,
nu.fo="1, family=BCCGo, data=rent, trace=FALSE)

r7 <- gamlss(R ~ pb(Fl)+pb(A)+H+loc,sigma.fo="pb(F1)+pb(A)+H+loc,
nu.fo="pb(F1l)+pb(A)+H+loc, family=BCCGo, data=rent,
trace=FALSE)

AIC(r4, r6, r7)

HH mm o
wp(ré, ylim.all=.6) ; title("r6: BCCG(mu, sigma)")
wp(r7, ylim.all=.6) ; title("r7: BCCG(mu, sigma, nu)")

2 A simple example using the gamlss packages.

The following is an example from Chapter 2 of the book ”Flexible Regression and Smoothing:
Using GAMLSS in R.

Familiarize with the gamlss functions and packages by repeating the commands given below.

The gamlss() function allows modelling of up to four parameters in a distribution family, which
are conventionally called u, o, v and 7. Here we give a simple demonstration using the film9e
data set.

R data file: film90 in package gamlss.data of dimension 4015 x 4.
variables
lnosc : the log of the number of screens in which the film was played
lboopen : the log of box office opening week revenues
lborev1 : the log of box office revenues after the first week (the response variable
which has been randomized)
dist : a factor indicating whether the distributor of the film was an ”Indepen-
dent” or a "Major” distributor
purpose: to demonstrate the fitting of a simple regression model in the gamlss pack-
age.

The original data were analysed in 7, where more information about the data and the purpose
of the original study can be found. Here for demonstrating some of the features of gamlss we
analysed only two variables: lborev1 as the response variable, and lboopen as an explanatory
variable.

We start by plotting the data in Figure|l] Two key features are suggested: (i) the relationship
between the response and the explanatory variable is nonlinear, and (ii) the shape of the response
variable distribution changes for different levels of the explanatory variable. As we will see in
Section a GAMLSS model has the flexibility to model these features.

library(gamlss)

data(film90)

plot(lborevi~lboopen, data=film9e, col="lightblue”, Figure
xlab="log opening revenue"”, ylab="log extra revenue")

2.0.1 Fitting a parametric model

Below we fit a simple linear regression model with normal errors. It is clear from Figure |2 that
the model does not fit well, especially for low values of 1boopen.

m <- gamlss(lborev1~lboopen, data=film90, family=NO)

GAMLSS-RS iteration 1: Global Deviance = 15079.74
GAMLSS-RS iteration 2: Global Deviance = 15079.74

plot(lborevi~™lboopen, data=film9@, col = "lightblue")
lines(fitted(m) " film90$1lboopen)

Figure

20

15

log extra revenue

4 6 8 10 12 14 16 18
log opening revenue

Figure 1: Scatterplot of the film9@ revenues

The problem seems to be the linear term in lboopen, so next we fit a cubic polynomial. One
method of fitting polynomial curves in R is by using the function I(). A different method is by
using the function poly() which fits orthogonal polynomials (see later).

mo@ <- gamlss(lborevi1~1lboopen+I(lboopen”®2)+I(lboopen”3), data=film90,
family=NO)

GAMLSS-RS iteration 1: Global Deviance = 14518.26
GAMLSS-RS iteration 2: Global Deviance = 14518.26

summary (moQ)

F o R R R T R B T L P L P e T P = 3
Family: c(”NO", "Normal")

#it

Call:

gamlss(formula = lborevl = lboopen + I(lboopen”2) +

I(lboopen”3), family = NO, data = film9@)

##

Fitting method: RS()

#i

e e e e e
Mu link function: identity

Mu Coefficients:

#i# Estimate Std. Error t value Pr(>|t])

(Intercept) -2.232e+01 1.271e+00 -17.57 <2e-16 #**xx*

R code on
page [3]

##
#i#
##
#i#
i
##
##
##
##
##
##
##
##
##
#i#
i
##
#i#
##
##
i
##
##
##

15
|

Iborevl

4 6 8 10 12 14 16 18
Iboopen

Figure 2: Scatterplot of the film90 data with the fitted linear model for the mean.

1boopen 7.147e+00 3.516e-01 20.32 <2e-16 *x*
I(lboopen®2) -4.966e-01 3.153e-02 -15.75 <2e-16 *xx*
I(lboopen®3) 1.270e-02 9.142e-04 13.89 <2e-16 *xx*
Signif. codes:

0 '*xx' 0.001 '*x' 0.01 'x' ©0.05 '.' 0.1 ' ' 1

Sigma link function: 1log
Sigma Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.38189 0.01114 34.29 <2e-16 **x*
Signif. codes:
0 '*xx' 0.001 '*x' 0.01 'x' ©0.05 '.' 0.1 ' ' 1

No. of observations in the fit: 4031
Degrees of Freedom for the fit: 5

Residual Deg. of Freedom: 4026
at cycle: 2
Global Deviance: 14518.26
AIC: 14528.26

R code on
page [3]

#it SBC: 14559.77
HH KKK KERKKHERKKIERKKIEKKKIRKKHERKKHERKKHERK K I IR KK IRKKKARK KKK KKK KK

Note that for large data sets it could be more efficient (and may be essential) to calculate the
polynomial terms in advance prior to using the gamlss() function, e.g.

X2<-x"2; x3<-x"3

and then use them within the gamlss() function, since the evaluation is then done only once:

film90 <- transform(film9@, 1b2=1boopen”2, lb3=1lboopen”3)
me0@2 <- gamlss(lborevl~lboopen + 1b2 + 1b3, data=film90, family=NO)

The fitted model is displayed in Figure [3] Although the new model is an improvement, the
polynomial line does not fit well for smaller values of 1boopen. This behaviour, i.e. erratic fitting
in the lower or upper end of the covariate, is very common in fitting parametric polynomial
curves.

plot(lborevi~lboopen, col="lightblue”, data=film9@)
lines(fitted(m002)[order(film90$1lboopen)]”™
film9e$1lboopenorder (film90$1lboopen)])

15

Iborevl

10

4 6 8 10 12 14 16 18
Iboopen

Figure 3: Scatterplot of the film90 data with the fitted cubic model for the mean.

R code on
page [0]

Using the notation y = lborev1 and x = lboopen, the fitted model m@@ is given by

y ~N(f1,6%)
where
L= BIO + an + 312332 + 313333
= —922.320 + 7.1472 — 0.49722 + 0.0132>
log(6) = 0.3819 ,

giving & = exp(0.3819) = 1.465.

The summary() function is useful for providing standard errors for the fitted coefficient param-
eters. The summary() function has two ways of producing standard errors: (i) type="vcov"
(the default) and (ii) type="qr"”. The way the standard errors are produced using the vcov
method is described in detail in Section ?7?. It starts by defining the likelihood function at the
maximum (using gen.likelihood()) and then obtaining the full (numerical) Hessian matrix of
all the beta coefficient parameters in the model.

Standard errors are obtained from the observed information matrix (the inverse of the Hessian
matrix). The standard errors obtained this way are more reliable than those produced by the
gr method, since they take into account the information about the interrelationship between
the distribution parameters, i.e. p and o in the above example. On occasions when the above
procedure fails, the standard errors are obtained from type= "qr", which uses the individual
fits of the distribution parameters and therefore should be used with caution. The summary ()
output gives a warning when this happens, as the standard errors produced this way do not
take into the account the correlation between the estimates of the distribution parameters p,
o, v and 7. (In the example above the estimates of p and o of the normal distribution are
asymptotically uncorrelated.)

Robust (“sandwich” or “Huber sandwich”) standard errors can be obtained using the argument
robust=TRUE of the summary() function. Robust standard errors were introduced by ? and
? and are, in general, more reliable than the usual standard errors when the variance model
is suspected not to be correct (assuming the mean model is correct). The sandwich standard
errors are usually (but not always) larger than the usual ones.

Next we demonstrate how vcov() can be used to obtain the variance-covariance matrix, the
correlation matrix and the (usual and robust) standard errors of the estimated parameters:

print(vcov(m@@), digit=3)

#i# (Intercept) 1boopen I(lboopen®2)
(Intercept) 1.61e+00 -4.43e-01 3.90e-02
1boopen -4.43e-01 1.24e-01 -1.10e-02
I(lboopen”2) 3.90e-02 -1.10e-02 9.94e-04
I(1lboopen”3) -1.10e-03 3.15e-04 -2.87e-05
(Intercept) 2.24e-11 -6.15e-12 5.40e-13
I(lboopen®3) (Intercept)
(Intercept) -1.10e-03 2.24e-11
lboopen 3.15e-04 -6.15e-12
I(1lboopen”2) -2.87e-05 5.40e-13

I(lboopen”3) 8.36e-07 -1.53e-14
(Intercept) -1.53e-14 1.24e-04

the correlation matrix
print(vcov(m@@, type="cor"), digit=3)

#i# (Intercept) 1boopen I(lboopen®2)
(Intercept) 1.00e+00 -9.93e-01 9.74e-01
1boopen -9.93e-01 1.00e+00 -9.94e-01
I(lboopen”2) 9.74e-01 -9.94e-01 1.00e+00
I(lboopen”3) -9.49e-01 9.79e-01 -9.95e-01
(Intercept) 1.58e-09 -1.57e-09 1.54e-09
I(lboopen®3) (Intercept)
(Intercept) -9.49e-01 1.58e-09
1lboopen 9.79%e-01 -1.57e-09
I(lboopen”2) -9.95e-01 1.54e-09
I(lboopen”3) 1.00e+00 -1.50e-09
(Intercept) -1.50e-09 1.00e+00

standard errors
print(vcov(m@@, type="se"), digits=2)

(Intercept) 1boopen I(lboopen®2) I(lboopen®3)
1.27058 0.35164 0.03153 0.00091
(Intercept)
#it 0.01114

print(vcov(m@@, type="se", robust=TRUE), digits=2)

(Intercept) 1boopen I(lboopen®2) I(lboopen”3)
#it 1.9702 0.5217 0.0446 0.0012
(Intercept)
#it 0.0135

Note that in the final row and/or column of the above output, Intercept refers to the intercept
of the predictor model for o (f20), while the first row and/or column Intercept refers to the
intercept of the predictor for p (B10)-

Now we fit the same model as in m@@, but using orthogonal polynomials using function poly(),
i.e. poly(x,3):

m@ <- gamlss(lborev1~poly(lboopen,3), data=film9e@, family=NO)

GAMLSS-RS iteration 1: Global Deviance = 14518.26
GAMLSS-RS iteration 2: Global Deviance = 14518.26

It is of some interest to compare the correlations between the parameter estimates for the two
fitted models m@@ and m@. Visual representation of the correlation coefficients can be obtained
using the package corrplot.

library(corrplot)
coll <- colorRampPalette(c("black”,"grey"))
corrplot(vcov(meo, type="cor"), col=col1(2), outline=TRUE,

Figure E

tl.col = "black”, addCoef.col = "white")
corrplot(vcov(m@, type="cor"), col=col1(2), outline=TRUE,
tl.col = "black”, addCoef.col = "white")

(Intercept)
poly(lboopen, 3)1
poly(lboopen, 3)2
poly(lboopen, 3)3

(Intercept)

(Intercept)
(Intercept)

Q (Intercept)

Iboopen
poly(lboopen, 3)1

O

I(lboopen”2)
poly(lboopen, 3)2

poly(lboopen, 3)3 . . . Q
(Intercept) Q

a -1

o

I(lboopen”3)

e 0
O E
© 0
e e

(Intercept)

O

Figure 4: Graphical displays of the correlation coefficient matrices for models mo@ (left) and me
(right)

Figure 4] shows the resulting graphical displays. Because, p and o in the normal distribution are
information independent (i.e. asymptotically uncorrelated), the first four estimated parameters
(1 model) are effectively not correlated with the fifth, the constant in the model for log(o), in
both models m@ and m@@. In addition all the parameters of the p model for m@ are uncorrelated
because we used orthogonal polynomials, but for me@ they are highly correlated.

2.0.2 Fitting a nonparametric smoothing model

In this section, we outline a few of the nonparametric smoothing functions implemented in
GAMLSS. In particular, we discuss the pb() (P-splines), cs() (cubic splines), 1lo() (locally
weighted regression) and nn() (neural networks) functions. For a comprehensive discussion
(and list of smoothing functions within GAMLSS), see Chapter ?7?.

2.0.3 P-splines

Model m@ is a linear parametric GAMLSS model, which we have seen does not fit particularly
well. Another approach is to fit a smooth term to the covariate lboopen. ? introduced non-
parametric penalized smoothing splines (P-splines), which are described in Section ??. In order
to fit the mean of lborevl with a P-spline for 1boopen, use:

R code on
page [9]

m1<-gamlss(lborev1~pb(lboopen), data=film90, family=NO)

##
#i#

GAMLSS-RS iteration 1: Global Deviance = 14109.58
GAMLSS-RS iteration 2: Global Deviance = 14109.58

summary(m1)

##
##
##
#i#
#i#
##
##
##
##
#i#
##
##
##
#i#
##
i
##
##
##
##
#i#
##
##
##
#i#
#i#
##
##
#i#
#i#
#i#
i
##
##
#i#
#i#
##
##
##
#i#
#i#
##

KR AR KA KRR AR KRR AR R AR R AR R AR KRR AR R AR KA A KRR A KRR AR KA A KRR AR KA R KA AR A AR R AR AR k)k%
Family: c("NO”, "Normal")

Call:
gamlss(formula = lborevl ™ pb(lboopen), family = NO,
data = film90)

Fitting method: RS()

Mu link function: identity
Mu Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.347147 0.087053 26.96 <2e-16 **x
pb(lboopen) ©.928889 0.007149 129.93 <2e-16 **x*

Signif. codes:
Q 'xxx' 0.001 '*x' 9.01 'x' ©0.05 '.' 0.1 ' ' 1

Sigma link function: 1log
Sigma Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.33120 0.01114 29.74 <2e-16 ***
Signif. codes:
0 '*xx' 0.001 '*x' 0.01 'x' ©0.05 '.' 0.1 ' ' 1

NOTE: Additive smoothing terms exist in the formulas:

i) Std. Error for smoothers are for the linear effect only.
ii) Std. Error for the linear terms maybe are not accurate.
No. of observations in the fit: 4031
Degrees of Freedom for the fit: 12.73672

Residual Deg. of Freedom: 4018.263
at cycle: 2
Global Deviance: 14109.58
AIC: 14135.05
SBC: 14215.32
AR AR A A KR A KR A KR A AR AR A AR AR A AR AR A AR AR AR A AR AR A AR AR A ARk A Ak A kA khk ki kxkhkkkxk

10

In the smoothing function pb() the smoothing parameter (and therefore the effective degrees
of freedom) are estimated automatically using the default local maximum likelihood method
described in 7. Within the pb() function there are also alternative ways of estimating the
smoothing parameter, such as the local generalized AIC (GAIC), and the local Generalized
Cross Validation (GCV).

The fitted model is displayed in Figure

plot(lborevl~lboopen, col="lightblue", data=film90)
lines(fitted(m1)[order(film9@$1lboopen)]~
film90$1lboopenlorder(film90$lboopen)])

20
|

15

Iborevl

10

4 6 8 10 12 14 16 18
Iboopen

Figure 5: P-splines fit: the film90 data with the fitted smooth mean function fitted using pb().

The effective degrees of freedom fitted by the pb() can be obtained using edf ():
edf(m1, "mu"”

Effective df for mu model
pb(lboopen)
11.73672

One of the important things to remember when fitting a smooth nonparametric term in gamlss()
is that the displayed coefficient of the smoothing term and its standard error (s.e.) refer only
to the linear component of the term. For example the coefficient 0.9289 and its s.e. 0.0071 in
the above output should be interpreted with care. They are an artefact of the way the fitting
algorithm works with the pb() function. This is because the linear part of the smoothing is
fitted together with all other linear terms (in the above case only the intercept). One should
try to interpret the whole smoothing function, which can be obtained using term.plot(). The

11

Figure

R code on

page 1]

effect that the smoothing function has on the specific parameters can also be checked using the
function getPEF(), which calculates the partial effect of a continuous variable given the rest
of the explanatory variables are fixed at specified values. The same function can be used to
obtain the first and second derivatives for the partial effects. Significance of smoothing terms
is obtained using the function drop1(), but this may be slow for a large data set with many
fitted smoothing terms.

Important: Do not try to interpret the linear coefficients or the standard errors of the
smoothing terms.

Note also that when smoothing additive terms are involved in the fitting, both methods (default
and robust) used in summary to obtained standard errors are questionable. The reason is that the
way veov () is implemented effectively assumes that the estimated smoothing terms were fixed at
their estimated values. The functions prof.dev() and prof.term() can be used for obtaining
more reliable individual parameter confidence intervals, by fixing the smoothing degrees of
freedom at their previously selected values.

2.0.4 Cubic Splines

Other smoothers are also available. In order to fit a nonparametric smoothing cubic spline with
10 effective degrees of freedom in addition to the constant and linear terms, use

m2<-gamlss(1lborev1~cs(lboopen,df=10), data=film9@, family=NO)

GAMLSS-RS iteration 1: Global Deviance = 14107.72
. . .
GAMLSS-RS iteration 2: Global Deviance = 14107.72

The effective degrees of freedom used in the fitting of p in the above model are 12 (one for the
constant, one for the linear and 10 for smoothing). Note that the gamlss() notation is different
from the gam() notation in S-PLUS where the equivalent model is fitted using s(x,11).

The total degrees of freedom used for model m2 is 13, i.e. 12 for u and 1 for . The fitted values
of p for models m1 and m2 are displayed in Figure @

plot(lborevi~lboopen, col="lightblue”, data=film9@)
lines(fitted(m1)[order(film90@$1lboopen)]~
film90$1lboopen[order (film90$1lboopen)])
lines(fitted(m2)[order(film90$lboopen)]~
film90@$1boopenlorder(film90$1lboopen)],
col="red", 1ty=2, 1lwd=2)
legend("topleft”,legend=c("m1: P-splines”,"m2: cubic splines"”),
1ty=1:2,col=c("black"”,"red"),cex=1)

2.0.5 loess

Locally weighted scatterplot smoothing [?], or loess, is described in Section ??. Loess curves
are implemented as

12

Figure |§|

20

| — m1: P-splines
- m2: cubic splines
n |
—
[
>
(]
=
o
o]
- O |
-
R code on
age
o - page 1]

4 6 8 10 12 14 16 18
Iboopen

Figure 6: P-splines and cubic splines fits: plot of the film9@ data together with the fitted
smooth mean functions of model m1 fitted by pb() (continuous line) and model m2 fitted by
cs() (dashed line).

13

m4 <- gamlss(lborevi~lo("lboopen,span=.4), data=film9@, family=NO)

2.0.6 Neural Networks

Neural networks can be considered as another type of smoother. Here a neural network smoother
is fitted using an interface of gamlss with the nnet package [?]. The additive function to be
used with gamlss() is nn(), which is part of the package gamlss.add. The following example
illustrates its use.

library(gamlss.add)
mnt <- gamlss(lborevi™nn(~lboopen,size=20,decay=0.1), data=film90,

family=NO)
o]
N —— ml: P-splines
- mnt: neural network z

|
«—

-

>

[0

=

o

Ko}

- O
—
o 4

4 6 8 10 12 14 16 18
Iboopen

Figure 7: Neural network fit: a plot of the film90 data together with the fitted smooth mean
functions of model m1 fitted by pb() (black continuous line) and the neural network model mnt
fitted by nn() (red dashed line).

GAMLSS-RS iteration 1: Global Deviance = 14186.98
. . .
GAMLSS-RS iteration 4: Global Deviance = 14125.05

This fits a neural network model with one covariate and 20 hidden variables. The decay argu-
ment is used for penalizing the fitted coefficients. The fitted values of models mnt and m1 are
displayed in Figure[7]

14

R code on

page [[4]

Figure H

plot(lborev1~™lboopen, col="lightblue", data=film90)
lines(fitted(m1)[order(film90$lboopen)]”
film90$1lboopenlorder(film90$lboopen)])
lines(fitted(mnt)[order (film9@$1boopen)]”
film90$1lboopen[order (film90$lboopen)],
col="red", 1lty=2, 1wd=2)
legend("topleft”,legend=c("m1: P-splines”,"mnt: neural network"),
1ty=1:2,col=c("black”,"red"),cex=1)

The function getSmo() is used to get more information about the fitted neural network model.
This function retrieves the last fitted object within the backfitting GAMLSS algorithm (in this
case a "nnet” object). Reserved methods such as print(), summary() or coef() can be used to
get information for the objects. Here we retrieve its 61 coefficients. (There are 40 parameters
from the relationship between the 20 hidden variables and the explanatory variable (constant
and slope parameters), together with 21 parameters from the relationship between the response
variable and the 20 hidden variables (constant and 20 slope parameters).)

coef (getSmo(mnt))

#H# b->h1 i1->h1 b->h2 i1->h2 b->h3
0.71711189 -0.13290196 6.78268584 -0.76164048 3.08247814
.

2.0.7 Extracting fitted values

Fitted values of the distribution parameters of a GAMLSS model (for all cases) can be obtained
using the fitted() function. For example

plot(lboopen, fitted(ml,"mu"))

will plot the fitted values of p distribution parameter against x (1boopen). The constant esti-

mated scale parameter (the standard deviation of the normal distribution in this case) can be
obtained:

fitted(ml,"sigma”)[1]

1
1.392632

where [1] indicates the first element of the vector. The same value can be obtained using the
more general function predict():

predict(ml,what="sigma"”, type="response”)[1]

1
1.392632

The function predict() can also be used to predict the response variable distribution parameters
for both old and new data values of the explanatory variables. This is explained in Section ?7.

One of the flexibilities offered by GAMLSS is the modelling of all the distribution parameters
(rather than just u). This means that the scale and shape of the distribution can vary as a

15

(linear or smooth) function of explanatory variables. Below, we show how to model both p and
o of a normal response distribution. Figure[T]suggests that this flexibility of a GAMLSS model
might be required.

2.0.8 Modelling both x4 and o

To model the predictors of both the mean p and the scale parameter o as nonparametric
smoothing P-spline functions of 1boopen (with a normal response distribution) use:

m3 <- gamlss(lborevi1~pb(lboopen),sigma.formula="pb(lboopen),
data=film90, family=NO)
edfAll(m3)

GAMLSS-RS iteration 1: Global Deviance = 12263.21
. . .

GAMLSS-RS iteration 4: Global Deviance = 12263.54
$mu

pb(lboopen)

#H# 12.1442

##

$sigma

pb(lboopen)

#H# 10.67769

o |
I3
0 |
=
<
)
S
S
o
= o |
—
R code on
age
o page [I7]

4 6 8 10 12 14 16 18
Iboopen

Figure 8: The film90 data with the fitted smooth mean function of model m3, in which both
the mean and variance models are fitted using pb(1lboopen).

16

The function edfAll() is used to obtain the effective degrees of freedom for all parameters.
These are 12.14 and 10.68 for p and o respectively. The fitted model for p is displayed in

Figure

plot(lborevl~lboopen, col="lightblue”, data=film90) Fi
lines(fitted(m3)[order(film9e$lboopen)]™ igure [
film90$1lboopen[order (film90$1lboopen)])

2.0.9 Diagnostic plots

Once a GAMLSS model is fitted, it is important to assess the adequacy of the fitted model
by examining the model residuals. See Chapter ?? for more details. The function resid() (or
residuals()) can be used to obtain the fitted (normalized randomized quantile) residuals of a
model, referred to as residuals throughout this book. See 7 and Chapter 7?7 for more details.
Residual plots are graphed using plot():

plot(m3)

FigureEl
b R R AR R T B T L D L L L S T P L 3
Summary of the Quantile Residuals
#it mean = 0.0006979142
variance = 1.000248
#i coef. of skewness = 0.5907226
#i coef. of kurtosis = 3.940587
Filliben correlation coefficient = ©.9909749

b R Rk R R D P P e T T T3

Figure[J]shows plots of the residuals: (top left) against the fitted values of y; (top right) against
an index (i.e. case number); (bottom left) a nonparametric kernel density estimate; (bottom
right) a normal Q-Q plot. Note that the plot() function does not produce additive term plots
(as it does, for example, in the gam() function of mgev). The function which does this in the
gamlss package is term.plot().

The worm plot (see Section ??) is a de-trended normal Q-Q plot of the residuals. Model
inadequacy is indicated when many points plotted lie outside the (dotted) point-wise 95%
confidence bands. The worm plot is obtained using wp():

wp(m3

p(m3) Figure
Warning in wp(m3): Some points are missed out

increase the y limits using ylim.all

title("(a)")

To include all points in the worm plot, change the “Deviation” axis range by increasing the

value of ylim.all until all points are included in the plot (avoiding a warning message):

wp(m3, ylim.all=3) .
title(”(b)") Figure [10]

Since there is no warning message, all points have been included in the worm plot. Model
inadequacy is indicated by the fact that many points lie outside the 95% confidence bands.

17

Against Fitted Values Against index

© ©
L o < 4
s]
b=} b=}
3~ 3 ~
4 4
= 2
§ o £ o4
& &
o~ o~
I I
6 8 10 12 14 16 18 0 1000 2000 3000 4000
Fitted Values index
Density Estimate Normal Q-Q Plot
s © 00
S
®
a g ¥ &
e = R code on
2 N
2 o | &
§ s : page [I7]
E o o
— I3
o n
(Tl -
o |
=) 1 1 1 \I“ L T & T T T
-2 0 2 4 6 -2 0 2
Quantile. Residuals Theoretical Quantiles
Figure 9: Residual plots from the fitted normal model m3, using pb(lboopen) for both u and
log(o).
(@) (b)
N
(=} ™ -
o
~ - fa}
= |
(=}
-
8 15
3 3
a fa}
74 -
o
2
]
o~
I
R code on
? T - T T T T T T T T T page E
-4 -2 0 2 4 -4 -2 0 2 4
Unit normal quantile Unit normal quantile

Figure 10: Worm plots from model m3.

2.0.10 Fitting different distributions

One of the most important modelling decisions for a GAMLSS model is the choice of the
distribution for the response variable. See Chapter 77 for a discussion of available distributions

18

in GAMLSS. To use a distribution other than the normal (the default), use the family option
of gamlss(). For example, to fit the Box-Cox-Cole-Green (BCCG), a three-parameter continuous
distribution, use:

m5 <-gamlss(lborev1~pb(lboopen), sigma.formula="pb(lboopen),
nu.formula="pb(lboopen), data=film9@, family=BCCG)

GAMLSS-RS iteration 1: Global Deviance = 11888.56
. . .
GAMLSS-RS iteration 5: Global Deviance = 11809.64

To fit the Box-Cox power exponential (BCPE) distribution, a four-parameter continuous distri-
bution:

m6 <-gamlss(lborevl~pb(lboopen), sigma.formula="pb(lboopen),
nu.formula="pb(lboopen), tau.formula="pb(lboopen),
data=film9@, start.from=m5, family=BCPE)

GAMLSS-RS iteration 1: Global Deviance = 11738.54
. . .
GAMLSS-RS iteration 20: Global Deviance = 11733.63

Note that we have used the argument start.from=m5 to start the iterations from the previous
fitted m5 model.

The details of all the distributions currently available in gamlss() are given in ?.

The details of all the distributions currently available in gamlss() are given in ?.

2.0.11 Selection between models

Once different models in GAMLSS have been fitted (either by using different distributions
and/or smoothing terms), models may be selected by using, for example, an information crite-
rion. See Chapter 11 for model selection techniques in GAMLSS.

For example, different models can be compared by a test based on their global deviances: GD =
—20 (if they are nested), or by selecting the model with lowest generalized Akaike information
criterion: GAIC = —2/ + k - df , Where 7 is the fitted log-likelihood function and « is a required
penalty, e.g. k = 2 for the AIC, k = logn for the SBC, or k = 3.84 (corresponding to a
Chi-squared test with one degree of freedom for a single parameter). The function deviance()
provides the global deviance of the model.

Note that the gamlss() global deviance is different from the deviance provided by glm() and
gam(),.The global deviance is exactly minus twice the fitted log-likelihood function, including
all constant terms in the log-likelihood. The glm() deviance is calculated as a deviation from
the saturated model. It does not include ‘constant’ terms (which do not depend on the mean of
distribution but do depend on the scale parameter) in the fitted log-likelihood, and so cannot
be used to compare different distributions. The functions AIC() or GAIC() (which are identical)
are used to obtain the generalized Akaike information criterion. For example to compare the
models m@ to m6: chunk 13

19

GAIC(m@,m1,m2,m3,m4,m5,m6)

df AIC
m6 44.97879 11823.59
m5 36.06436 11881.77
m3 22.82189 12309.19
m2 12.99817 14133.72
ml 12.73672 14135.05
m4 10.08556 14139.34
mo0 5.00000 14528.26

GAIC() uses default penalty x = 2, resulting in the AIC. Hence according to the AIC model mé
is selected as best (smallest value of AIC). To change the penalty in GAIC() use the argument
k:

GAIC(m@,m1,m2,m3,m4,m5,m6, k=log(4031))

df AIC
m6 44.97879 12107.03
m5 36.06436 12109.04
m3 22.82189 12453.00
m4 10.08556 14202.89
m1 12.73672 14215.32
m2 12.99817 14215.63
m@ 5.00000 14559.77

In this case with GAIC (k = logn) we have the SBC. Models selected using SBC are generally
simpler than those selected using AIC. This is the case here, where model m5 is selected.

Other model selection criteria based on training, validation and test samples are discussed on
Chapter 11.

Chosen Model

Using the AIC, model m6 is selected with Y = 1borev ~ BCPE(u, o, v, 7) where each of p, o, v
and 7 are modelled as smooth functions of = 1boopen. The fitted smooth functions for both
m5 and m6 models are shown in Figure

fittedPlot(m5, m6, x=film9@$lboopen, line.type = TRUE)

Since, in this example, only one explanatory variable is used in the fit, centile estimates for the
fitted distribution can be shown using the functions centiles() or centiles.fan().

centiles.fan(m6, xvar=film90$lboopen, cent=c(3,10,25,50,75,90,97),
colors="terrain",ylab="1borev1"”, xlab="1lboopen")

Figure shows centile curves for lborevl against lboopen from the fitted model m6. For
example the lowest curve is the fitted 3% centile curve, defined by 3% of the values of lborev1
lying below the curve for each value of lboopen, for the fitted model m6 if it was the correct
model. For more details on centile curves see Chapter 13. Figure [I3] also shows how the
fitted conditional distribution for the response variable lborev1 changes according to variable
lboopen. The function plotSimpleGamlss() from the package gamlss.util is used here.

20

Figure

Figure

Figure

filmgosiboopen filmgosiboopen

© (d)

\ u

filmgosiboopen filmgosiboopen

Figure 11: A plot of the smooth fitted values for all the parameters (a) u, (b) o, (¢) v and (d) 7
from models m5 (dashed line) and mé (continuous line). The distribution for model m5, BCCG,

has only three parameters so does not appear in panel (d).

Centile curves using BCPE

20

15

Iborevl

10

4 6 8 10 12 14 16 18
Iboopen

Figure 12: Centile fan plot for the m6 model showing the 3%, 10%, 25%, 50%, 75%, 90% and

97% centiles for the fitted BCPE distribution.

21

R code on

page [20]

R code on

page [20]

library(gamlss.util)

library(colorspace)

plotSimpleGamlss(lborev1,lboopen, model=m6, data=film9o,
x.val=seq(6,16,2), val=5, N=1000, ylim=c(0,25),
cols=heat_hcl(100))

new prediction
New way of prediction in pb() (starting from GAMLSS version 5.0-3)
new prediction
New way of prediction in pb() (starting from GAMLSS version 5.0-3)
new prediction
New way of prediction in pb() (starting from GAMLSS version 5.0-3)
new prediction
New way of prediction in pb() (starting from GAMLSS version 5.0-3)

25

Iborevl
15

10

R code on

page [22]

o T

6 8 10 12 14 16 18
Iboopen

Figure 13: Fitted conditional distribution of the response variable lborev1, showing how it
changes for different values of the covariate 1boopen.

Figure [13] highlights how the fitted conditional distribution of lborev1 changes with 1boopen.
This is the essence of GAMLSS modelling.

Important: Within GAMLSS, the shape of the conditional distribution of the response
variable can vary according to the values of the explanatory variables.

22

3

The abdom data.

R data file: abdom in package gamlss.data of dimensions 610 x 2

variables

y : abdominal circumference

X : gestational age

purpose: to demonstrate the fitting of a simple regression type model in GAMLSS

Fit different response distributions and choose the ‘best’ model according to the GAIC criterion:

1.
2.

4

Load the abdom data and print the variable names.

Fit the normal distribution model, using pb() to fit P-spline smoothers for the predictors
for pu and o with automatic selection of smoothing parameters:

mNO<- gamlss(y pb(x), sigma.fo="pb(x), data=abdom, family=NO)

. Try fitting alternative distributions:

(a) two-parameter distributions: GA, IG, GU, RG, LO,
(b) three-parameter distributions: PE, TF, BCCG,
(¢) four-parameter distributions: BCT, BCPE.

Apply pb() to all parameters of each distribution. Make sure to use different model names.

. Compare the fitted models using GAIC with each of the penalties k=2, k=3 and k=1log(length(abdom$y)),

e.g.
GAIC(mNO,mGA,mIG,mGU,mRG,mLO, mPE ,mTF ,mBCCG, mBCT, mBCPE , k=2)

. Check the residuals for your chosen model, say m, by plot(m) and wp(m).
. For a chosen model, say m, look at the total effective degrees of freedom edfAll(m), plot the

fitted parameters, fittedPlot(m,x=abdom, $x), and plot the data by plot(y~x,data=abdom),
and fitted p against x, lines(fitted(m)~x, data=abdom).

. For a chosen model, examine the centile curves using centiles(m,abdom$x).

The air quality data.

The air quality data: The data set airquality is one of the data frames available in R within
the standard package datasets. It has the daily air quality measurements in New York, from
May to September 1973.

R data file: airquality in package datasets of dimensions 154 x 6

variables

23

Ozone : in ppb

Solar.R : in lang

Wind : in mph

Temp : in F

Month : Month (1-12)

Day : Day of month (1-31)

purpose: to demonstrate the need for smooth functions.

(a) Here we will use Ozone as the response variable and Solar.R, Wind and Temp as explanatory
variables. (We will not consider Month and Day.) The data can be plotted using:
data(airquality)
plot(airquality[,-c(5,6)1)

Comment on the plot.

(b) To fit a standard regression model (i.e. with a normal distribution and constant variance)
use the function 1m():

air.lm <- 1lm(Ozone“Temp+Wind+Solar.R,data=airquality)
summary(air.1lm)

The summary() provides information about the coefficients and their standard errors. To
plot the fitted model terms use termplot():

op<-par(mfrow=c(1,3))

termplot(air.lm,partial.resid=TRUE, se=T)

par(op)

Comment on the term plot.

(¢) Check the residuals using plot():
op<-par(mfrow=c(1,2))
plot(air.1lm,which=1:2)
par(op)

(d) Fit the same model using the gamlss() function, but note that the data set airquality
has some missing observations (i.e. NA values). The gamlss() function does not work with
NA’s, so before fitting the model the cases with missing values have to be removed:
library(gamlss)
da <- na.omit(airquality)
mno<-gamlss(Ozone ~Temp+Wind+Solar.R, data=da)
summary (mno)

Summarize the fitted gamlss model using summary(). Plot the fitted terms using the cor-
responding function for gamlss called term.plot():

24

5

term.plot(mno, pages=1, partial=T)

Check the residuals using the plot() and wp() functions:

plot(mno)
wp (mno)

Comment on the worm plot. Note the warning message that some points are missed out of
the worm plot. Increase the limits in the vertical axis by using the argument ylim.all=2
in wp().

Since the fitted normal distribution seems not to be correct, try to fit different distributions
(e.g. gamma (GA), inverse Gaussian (IG) and Box Cox Cole and Green (BCCGo)) to the data.
Compare them with the normal distribution using GAIC with penalty k = 2 (i.e. AIC).

mga <- gamlss(Ozone Temp+Wind+Solar.R, data=da, family=GA)

mig <- gamlss(Ozone Temp+Wind+Solar.R, data=da, family=IG)
mbccg <- gamlss(Ozone Temp+Wind+Solar.R, data=da, family=BCCGo)
GAIC(mno, mga, mig, mbccg)

For the selected distribution, fit smoothing terms, i.e pb(), for Solar.R, Wind and Temp.
mgal=gamlss(0zone ~pb(Temp)+pb(Wind)+pb(Solar.R),data=da,
family=GA)
term.plot(mgal, pages=1)
plot(mgal)
wp(mgal)

Is the model improved according to the AIC? Use term.plot() output to see the fitted
smooth functions for the predictor of y for your chosen distribution. Use plot() and wp()
output to check the residuals.

Use the gamlss.demo package to plot distributions.

Use the gamlss.demo package to plot distributions.

library(gamlss.demo)
gamlss.demo()

Investigate how the following distributions change with their parameters:

1. Continuous distributions
(a) Power exponential distribution (PE) for —co < y < o0
(b) Gamma distribution (GA) for 0 < y < oo
(¢) Beta distribution (BE) for 0 < y < 1

2. Discrete distributions

25

(a) Negative binomial type I (NBI) for y =0,1,2,3,...
(b) Beta binomial (BB) for y =0,1,2,3,...,n
3. Mixed distributions
(a) Zero adjusted gamma (ZAGA) for 0 < y < o
(b) Beta inflated (BEINF) for 0 <y < 1

6 Plotting different distributions.

The gamlss.dist package (which is downloaded automatically with gamlss) contains many dis-
tributions. Typing

?gamlss.family

will show all the available distributions in the gamlss packages. You can also explore the shape
and other properties of the distributions. For example the following code will produce the pdf,
cdf, inverse cdf and a histogram of a random sample generated from a gamma distribution:

PPP <- par(mfrow=c(2,2))

plot(function(y) dGA(y, mu=1@ ,sigma=0.3),0.1, 25) # pdf
plot(function(y) pGA(y, mu=1@ ,sigma=0.3), 0.1, 25) #cdf
plot(function(y) qGA(y, mu=10 ,sigma=@.3), @, 1) # inverse cdf
hist(rGA(100,mu=10,sigma=.3)) # randomly generated values

par (PPP)

Note that the first three plots above can also be produced by using the function curve(), for
example

curve(dGA(x=x, mu=10, sigma=.3),0, 25)

To explore discrete distributions use:

PPP <- par(mfrow=c(2,2))

plot(function(y) dNBI(y, mu = 10, sigma =0.5), from=0, to=40,
n=40+1, type="h", main="pdf", ylab="pdf(x)")

cdf <- stepfun(0:39, c(@, pNBI(0:39, mu=10, sigma=0.5)), f = @)

plot(cdf,main="cdf"”, ylab="cdf(x)", do.points=FALSE)

invcdf <-stepfun(seq(@.01,.99,length=39), gNBI(seq(@.01, .99,

length=40), mu=10, sigma=0.5), f = @)

plot(invcdf,main="inverse cdf”,ylab="inv-cdf(x)",do.points=FALSE)

tN <- table(Ni <- rNBI(1000,mu=5, sigma=0.5))

r <- barplot(tN, col="lightblue")

par (PPP)

Note that to find moments or to check if a distribution integrates or sums to one, the functions
integrate() or sum() can be used. For example

integrate(function(y) dGA(y, mu=1@, sigma=.1),0, Inf)

will check that the distribution integrates to one, and

26

integrate(function(y) yxdGA(y, mu=10, sigma=.1),0, Inf)

will give the mean of the distribution.

The pdf of a GAMLSS family distribution can also be plotted using the gamlss function
pdf.plot(). For example

pdf.plot(family=GA, mu=10, sigma=c(.1,.5,1,2), min=0.01,max=20,
step=.5)

will plot the pdf’s of four gamma distributions GA(u, o), all with 4 = 10, but with o = 0.1,0.5,1
and 2, respectively.

Try plotting other continuous distributions, e.g. IG (inverse Gaussian), PE (power exponen-
tial) and BCT (Box-Cox t); and discrete distributions, e.g. NBI (negative binomial type I) and
PIG (Poisson inverse Gaussian). Make sure you define the values of all the parameters of the
distribution.

7 The DAX data.

Use the code below to reproduce the analysis of the DAX data given in lecture.

plot the data

dax <- EuStockMarkets[, "DAX"]
Rdax<-diff(log(dax))

plot(Rdax, col=gray(.2)); title("(a)")
library(MASS)

truehist (Rdax, col=gray(.7)); title("(b)")

using fitDist()

f1 <- fitDist(Rdax, type="realline")
f1$fits

f1$failed

using chooseDist()

ml <- gamlssML(Rdax, family = NO)
t1 <- chooseDist(m1, type = "realline")
t1

getting the order of best fits
getOrder(t1,1)[1:6]

refit the final model

mf <- update(ml, family="GT")

getting the coefficients
summary (mf)

the fitted parameters
fitted(f1,"mu")[1]
fitted(f1,"sigma")[1]
fitted(f1,"nu")[1]

27

fitted(f1, "tau")[1]

fh<-histDist(Rdax, family=GT, nbins=3@, line.col="black")

8 Turkish stock exchange.

Turkish stock exchange: the tse data. The data are for the eleven-year period 1 January
1988 to 31 December 1998. Continuously compounded returns in domestic currency were cal-
culated as the first difference of the natural logarithm of the series. The objective is to fit a
distribution to the Turkish stock exchange index.

R data file: tse in package gamlss.data of dimensions 2868 x 6.
variables

year

month

day

ret : day returns ret[t]=1n(currency[t])-1n(currency[t-11)

currency : the currency exchange rate

tl : day return ret[t]=logl@(currency[t])-logl@(currency[t-1])

purpose: to show the gamlss family of distributions.

1. Input the data and plot the returns sequentially using
with(tse, plot(ret,type="1"))

2. Fit continuous distributions on (—oco < y < 00) to ret. Automatically choose the best
fitting distribution according to AIC. Show the AIC for the different fitted distributions.
Do any of the fits fail?
mbest<-fitDist(tse$ret,type="realline” k=2)
mbest
mbest$fits
mbest$fails

Repeat with k=3.84 and k=log(length(tses$ret)) (corresponding to criteria Xio.os and
SBC respectively).

3. For the chosen distribution, plot the fitted distribution using histDist(). Refit the model
using gamlss() in order to output the parameter estimates using summary().

4. An alternative approach is to manually fit each of the following distributions for ret using
histDist() (and using different model names for later comparison):

(a) two-parameter: normal NO(u, o),

28

mNO<-histDist(tse$ret, "NO",nbins=30, n.cyc=100)

(b) three-parameter: t family TF(u, o,) and power exponential PE(u, o, V)

(c) four-parameter: Johnson Su JSU(u, o, v, 7), skew exponential power type 1 to 4, e.g.
SEP1(u, 0, v, T), skew t type 1 to 5, e.g. ST1(, 0, v, 7) and sinh arc-sinh SHASH(, o, v, 7).

(Note that histDist() has as default nbins=30, to provide a detailed histogram.)

5. Use GAIC() with each of the penalties k = 2,3.84 and 7.96 = log(2868) (corresponding
to criteria AIC, X%,0.05 and SBC respectively), in order to select a distribution model.
Output the parameter estimates for your chosen model using the function summary().

9 Parzen snowfall data

R data file: parzen in package gamlss.data of dimension 63 x 1

source: 7
variables
snowfall : the annual snowfall in Buffalo, NY (inches) from 1910 to 1972
inclusive.

purpose: to demonstrate the fitting of continuous distribution to a single variable.
conclusion: the Weibull distribution appears to fit best.

This data set is used by ? and is also in 7, data set 278.

Selecting the distribution Use the function fitDist () to fit distributions to the data. We are
using the default value for the argument type = "realAll”, meaning we are using all available
continuous distributions. Also we try two different information criteria: AIC and SBC.

data(parzen)

mod1 <- fitDist(snowfall, data=parzen, k=2)

mod2 <- fitDist(snowfall, data=parzen, k=log(dim(parzen)[1]))
mod1$fit[1:6]

mod2$fit[1:6]

Using both criteria, it is obvious that the best model is the one using the Weibull distribution,
although several other distributions (including the normal) have similar values of AIC and SBC.

Next refit and plot the fitted model using histDist(), giving Figure ?7. Note that the option
density=TRUE requests a nonparametric kernel density estimate to be superimposed on the plot.

m1 <-histDist(parzen$snowfall, "WEI3" , density=TRUE,
line.col=c(1,1), line.ty=c(1,2))

The WEI3(p, o) distribution is the parameterization of the Weibull distribution with x4 the mean.
Checking the model

29

A check of the normalized quantile residuals using a Q-Q and a worm plot (i.e. a detrended Q-Q
plot) provides a guide to the adequacy of the fit. The gamlss package provides the functions
plot() and wp() for this purpose.

plot(m1)
wp(m1)

Testing hypotheses about the model

There are several methods to check the reliability of the fitted parameters of the distribution.
Standard errors for the fitted parameters are provided by two functions: (i) summary() and (ii)
vcov(). In general the values obtained should be identical, since by default summary() gives the
standard errors obtained by vcov. The standard errors obtained by vcov() are the ones obtained
by inverting the full Hessian matrix and they do take into account the correlations between the
distribution parameter estimates. Note that the function vcov(), applied to a gamlss object,
refits the final model one more time in order to obtain the Hessian matrix. Occasionally this
could fail, in which case summary () will use an alternative method called qr and give a warning
that gr is used. This uses the QR decomposition of the individual distribution parameter
estimation fits. The standard errors given by the qr method of summary() are not very reliable
since they are the conditional standard errors obtained by assuming that the other distribution
parameters are fixed at their maximum likelihood estimates. Use the summary () and the vcov ()
function.

m1<-gamlss(snowfall™1, data=parzen, family=WEI3, trace=FALSE)
summary(m1)
vcov(ml, type="se")

The fitted Weibull distribution model is given by Y; ~ WEI3(f, &) where log(i) = 4.387,
i = exp(4.387) = 80.399; and log(d) = 1.344, so 6 = 3.834. Note that i and & are the
maximum likelihood estimates of p and o.

The standard errors obtained are 0.0368 for log(i) = Bor and 0.0992 for log(6) = o2 Tespec-
tively, using either the summary() or vcov() functions. Note that since the Weibull fitting
function WEI3() uses the log link for both pu and o, the standard errors given are those for
log(ji) = Bo1 and for log(6) = Bos. For example, an approximate 95% confidence interval (CT)
for log(o) = Bo2, using the vcov() results, is

(1.344 — (1.96 x 0.0992),1.344 + (1.96 x 0.0992)) = (1.150, 1.538) .

Hence an approximate 95% CI confidence interval for o is given by
(exp(1.150), exp(1.538)) = (3.158,4.655) .

This 95% CI for o can be compared with the more reliable profile deviance 95% CI:
prof.dev(ml, "sigma”, min=3, max=4.8, step=.01, col=1)
giving 95% CI (3.126, 4.617). Note that prof.dev() works only with gamlss objects.

These Cls may also be compared with the bootstrap 95% CI for o

library(boot)
set.seed(1453)

30

mod1<-gamlss(snowfall™1, data=parzen, family=WEI3, trace=FALSE)
funB <- function(data, i)
{
d<-data.frame(snowfall=datali,])
coef (update(mod1, data=d),"sigma")
}
(mod1.boot<-boot(parzen, funB, R=199, parallel="multicore”,
ncpus = 4))
boot.ci(mod1.boot, type=c("norm”, "basic"))

There are two 95% bootstrap Cls intervals for o, the ‘normal’
(exp(1.154), exp(1.507)) = (3.171,4.513),

and the ‘basic”
(exp(1.160), exp(1.491)) = (3.190,4.442).

More details about the boot() function can be found in ?, p. 173.

10 The cable television data.

The cable data set concerns the penetration of cable television in n = 283 market areas in
the USA. The data were collected in a mailed survey questionnaire in 1992 [?]. The aim of
the study was to explain cable television uptake (the proportion pen5) as a function of area
demographics.

R data file: cable in package gamlss.data of dimension 283 x 6
source: 7
variables
pen5 : proportion of households having cable TV in market area
lin : log median income
child : percentage of households with children
1tv : number of local TV stations
dis : consumer satisfaction index
agehe : age of cable TV headend
purpose: to demonstrate the fitting of a parametric distribution to the response
variable pen5 with range (0, 1).
conclusion: For the marginal distribution, the truncated normal fits best; for the
regression model, the truncated skew ¢ (SSTtr) is best.

1. Examine a histogram of pen5. What is the range of pen5?
truehist(cable$pen5, nbins=20, xlim=c(0,1))

2. Using fitDist(), find the distribution that best fits pen5. Use generated and truncated
distributions, as well as the explicit gamlss.family distributions. Display the fit of the
‘best’ distribution (using the default, AIC).

31

library(gamlss.tr)

logit transformations
gen.Family("TF", "logit")
gen.Family("”ST3", "logit")
gen.Family("SEP3", "logit")

truncated distributions
gen.trun(c(0,1),"TF", type="both")
gen.trun(c(9,1),"N0", type="both")
gen.trun(c(9,1),"SST", type="both")

a <- fitDist(cable$pen5, type="real@tol”, extra=c("logitTF",
"logitST3", "logitSEP3","TFtr", "NOtr", "SSTtr"))

a$fits

histDist(cable$pen5, family=NOtr)

3. Now select a distribution for the regression model for pen5, with p predictor pb(lin)+1tv+agehe.

mo <- gamlss(pen5~pb(lin)+ltv+agehe, family=BE, data=cable,
n.cyc=50)

cl <- chooseDist(m@, type="real@tol”, extra=c("logitTF",

"logitST3", "logitSEP3","TFtr”, "NOtr", "SSTtr"))

ml <- gamlss(pen5~pb(lin)+ltv+agehe, family=SSTtr, data=cable,
n.cyc=50)

plot(m1)

wp(m1)

4. Investigate whether model m1 can be improved on by the addition or deletion of covariates
in the model for u, and the addition of covariates in the model for o.

11 The 2000 Presidential Election.

? analyse US election data, at the state level, in the 2000 Presidential Election. The response
variable is the proportion of the state that voted for George Bush; and the predictors are state
demographic indicators.

32

R data file: bush2000 in package gamlss.data of dimension 51 x 10
source: 7
variables
state : name of state
bush : proportion of state’s vote for George Bush
male : percentage of population male
pop : population
rural : percentage of population living in rural areas
bpovl : percentage of population with income below the poverty level
clfu : unemployment rate (%)
mgt18 : percentage of male population older than 18 years
pgt65 : percentage of population older than 65 years
numgt75 : percentage of population with income > $75K
purpose: to demonstrate the fitting of a parametric distribution to the response
variable bush with range (0,1).
conclusion: For the marginal distribution, the truncated ¢ family fits best; for the
regression model, the truncated normal is best.

e Examine a histogram of bush. What type of distribution is suggested?
truehist (bush2000$bush, nbins=20, xlim=c(0,1))

e Using fitDist(), find the distribution that best fits bush. Use generated and truncated
distributions, as well as the explicit gamlss.family distributions as in question 1. Display
the fit of the ‘best’ distribution.

e Now select a distribution for the regression model for bush, with u predictor

male+log(pop)+rural+bpovl+clfu.

mo <- gamlss(bush™male+log(pop)+rural+bpovl+clfu,
family=BE, data=bush2000, n.cyc=100)

cl <- chooseDist(m@, type="real@tol”, extra=c("logitTF",

"logitST3"”, "logitSEP3",”"TFtr”, "NOtr”, "SSTtr"))

ml <- gamlss(bush™male+log(pop)+rural+bpovl+clfu,
family=NOtr, data=bush2000, n.cyc=100)

plot(m1)

wp(m1)

e Investigate whether model m1 can be improved on by the addition or deletion of covariates
in the model for p, and the addition of covariates in the model for o.

12 EuStockMarkets data

For the rest of the returns from the EuStockMarkets data (that is do not use DAX):

1. Use the functions checkMomentSK() and checkCentileSK() to check the skewness and
kurtosis. For example to get the UK FTSE returns use:

33

ftse <- EuStockMarkets[,"FTSE"]
Rftse<-diff(log(ftse))

Repeat the same to getthe Switzerland SMI and France CAC returns.

2. Fit an appropriate model to each of the returns and check the skewness and kurtosis of
the fitted residuals.

13 Munich rent data

This example shows how to check the skewness and kurtosis of several fitted models using the
same plot. We use the Munich rent data, which come from a survey conducted in April 1993
by Infratest Sozialforschung, in which a random sample of accommodation with new tenancy
agreements or increases of rents within the last four years in Munich was selected.

R data file: rent in package gamlss.data of dimension 1969 x 9

var R : monthly net rent in Deutsche Marks (DM), i.e. the monthly rent minus calculated
or estimated utility cost (response variable)

F1 : floor space in square meters

A : year of construction

1. Fit different models to the rent data.

ri <- gamlss(R"pb(Fl)+pb(A), data=rent)

r2 <- gamlss(R"pb(F1)+pb(A), data=rent, family=GA)

r3 <- gamlss(R"pb(F1)+pb(A), data=rent, family=BCCG)

r4 <- gamlss(R"pb(F1)+pb(A), sigma.fo="pb(F1)+pb(A),data=rent)

r5 <- gamlss(R"pb(F1)+pb(A), sigma.fo="pb(F1l)+pb(A),data=rent,
family=GA)

ré <- gamlss(R"pb(F1l)+pb(A), sigma.fo="pb(Fl)+pb(A),data=rent,
family=BCCG)

2. Inspect the skewness and kurtosis for all models simultaneously:

checkMomentSK(r1, boot=T, col.boot="yellowl")
checkMomentSK(r2, add=T, boot=T, col.bootstrap = "turquoise")
checkMomentSK(r3, add=T, boot=T, col.bootstrap = "tan")
checkMomentSK(r4, add=T, boot=T, col.bootstrap = "violet")
checkMomentSK(r5, add=T, boot=T, col.bootstrap = "whitesmoke")
checkMomentSK(r6, add=T, boot=T, col.bootstap = "wheat”)

3. Comment on the results.

4. Investigate the adequacy of your chosen model using multiple worm plots and Q-statistics
(?, Chapter 12).

34

14 The stylometric data.

R data file: stylo in package gamlss.data of dimensions 64 x 2
variables

word : number of times a word appears in a single text

freq : frequency of the number of times a word appears in a text

purpose: to demonstrate the fitting of a truncated discrete distribution.

Note that the response variable word is (left) truncated at 0.
1. Load the data and plot them.

2. Create different truncated at zero count data distributions (PO, NBII, DEL, SICHEL), for
example:

gen.trun(par = @, family = PO, type = "left")

3. Fit the different truncated distributions, for example:
mPO <- gamlss(word ~ 1, weights = freq, data = stylo,
family = POtr, trace = FALSE)
4. Compare the distributions using GAIC.
5. Check the residuals of the chosen model using plot() and wp().
6. Plot the fitted distributions using histDist.

15 The fish species data.

R data file: species in package gamlss.data of dimension 70 x 2
variables
fish : the number of different species in 70 lakes in the world
lake : the lake area

purpose: to demonstrate results of fitting using RS, CG and ‘mixed’ algorithms

The number of different fish species (fish) was recorded for 70 lakes of the world together with
explanatory variable x = log lake area. Follow the analysis below:

library(gamlss)
data(species)

species <- transform(species, x=log(lake))
plot(fish™x,data=species)

35

Figure

o
g_ o
o
o
O_
Al
o
8 o
—
<
2
=
o0 ©
o
O o
~— o
o
o
o o
(0]
o | ° o
Te) 8 o o
® ° ?
° o
O 00 o o o o
e o, ©_o oo 028 50 0%, %0 & °
o o
O_

Figure 14: The fish species data.

The data were analysed by Stein and Juritz (1988) using a Poisson inverse Gaussian (PIG(u, o))
distribution for fish, with a linear model in log(lake) for log i, and a constant for o. Rigby et
al. analysed this data set and identified the following questions that need to be answered. Note
that the same questions could apply to any regression situation where the response variable is
a count and x represents a set of explanatory variables.

e How does the mean of the response variable depend on x?

Is the response variable overdispersed Poisson?

e How does the variance of the response variable depend on its mean?

e What is the conditional distribution of the response variable given x?

e Do the scale and shape parameters of the response variable distribution depend on x?

Here we will model the data using different discrete distributions and consider flexible models for
the distribution parameters, where any or all of them may depend on the explanatory variable
log(lake). We start by fitting seven different count distributions to the data:

e Poisson (PO),

double Poisson (DPO),

negative binomial types I and IT (NBI, NBII),

e Poisson inverse Gaussian (PIG),

Delaporte (DEL) and

36

R code on

page [35]

e Sichel (SICHEL).

We first use a linear and then a quadratic polynomial in x=1og(lake). The AIC of each model
is printed for comparison.

the count distributions

fam<-c("P0O","DPO", "NBI", "NBII", "PIG", "DEL", "SICHEL")

#creating lists to keep the results

m.1<-m.g<-list()

fitting the linear in x models

for (i in 1:7) {

m.1[[fam[i]]]<-GAIC(gamlss(fish~x,data=species, family=fam[i],
n.cyc=60, trace=FALSE),k=2)}

fitting the quadratic in x models

for (i in 1:7) {

m.q[[fam[i]]]<-GAIC(gamlss(fish~poly(x,2),data=species,
family=fam[i], n.cyc=60, trace=FALSE), k=2)}

print the AICs

unlist(m.1)

i PO DPO NBI NBII PIG DEL
1900.1562 654.1616 625.8443 647.5359 623.4632 626.2330
i SICHEL
625.3923

unlist(m.q)

PO DPO NBI NBII PIG DEL
1855.2965 655.2520 622.3173 645.0129 621.3459 623.5816
SICHEL
623.0995

The Poisson model has a very large AIC compared to the rest of the distributions so we can
conclude that the data are overdispersed. The quadratic polynomial in x seems to fit better
than the linear term across the different count distributions (except for DPO), as judged by AIC.
The best model at this stage is the Poisson inverse Gaussian (PIG) model with a quadratic
polynomial in x. We now compare the AIC of a PIG model with a P-spline smoother, instead
of a quadratic polynomial, in x. The total effective degrees of freedom for x is calculated
automatically using pb(x) by the local ML method.

GAIC(m.pb<-gamlss(fish“pb(x), data=species, family=PIG, trace=FALSE))

[1] 623.4637

m.pb$mu.df

[1] 2.000016

The P-spline smoothing does not seem to improve the model, so we keep the quadratic polyno-

mial in x. We now model log(o) as a linear function of x in the six remaining count distributions
(after excluding the Poisson distribution which does not have a o parameter).

37

redefine the list of distributions

fam<-c("DPO"”,”NBI"”, "NBII", "PIG", "DEL", "SICHEL")

m.ql<-list()

for (i in 1:6) {

m.ql[[fam[i]]1]<-GAIC(gamlss(fish“poly(x,2),data=species,
sigma.fo="x, family=fam[i], n.cyc=6@, trace=FALSE))}

unlist(m.ql)

DPO NBI NBII PIG DEL SICHEL
626.4056 614.9565 615.1250 612.3667 614.6059 613.7327

Modelling log(o) as a linear function of x improves the AIC for all models. The PIG model is
still the ‘best’. Since the Sichel and the Delaporte distributions have three parameters we will
try to model the predictor of the third parameter v as a linear function of x. The Sichel uses
the identity as the default link for v while the Delaporte uses the logit.

fam<-c("DEL"”, "SICHEL")

m.qll<-list()

for (i in 1:2) {

m.qll[[fam[i]]]<-GAIC(gamlss(fish™poly(x,2),data=species,
sigma.fo="x, nu.fo="x, family=fam[i], n.cyc=60,
trace=FALSE))}

unlist(m.qll)

DEL SICHEL
614.7376 611.6346

Modelling the predictor of v as a linear function of x improves the Sichel model (which now has
a lower AIC than the PIG model) but not the Delaporte model. A further simplification of the
Sichel model can be achieved by dropping the linear term in x for the log(c) model which does
not contribute anything to the fit (at least according to the AIC):
mSI<-gamlss(fish~poly(x,2),data=species, sigma.fo="1, nu.fo="x,

family=SICHEL, n.cyc=60, trace=FALSE)
GAIC(mSI)

[1] 609.7268

plot(fish™log(lake), data=species) Figure
lines(species$x[order(species$lake)], fitted(mSI)[order(
species$lake)], col="red")

The fitted p model together with the data are shown in Figure Figures [16]a) and [I6|b) give
the fitted distribution of the number of fish species for observation 7, with lake area of 44 km?,
ie. v =log(44) = 3.74, and (1,6, 7) = (19.37,1.44, —7.18), and observation 68, with lake area
9,065km?, i.e. x = log(9065) = 9.11 and (fi,5,7) = (48.86,1.44, —1.10), respectively. Note that
the vertical scale is different for the two plots in Figure

pdf.plot(mSI,c(7,68), min=0, max=120, step=1) N |:|

Table (effectively Table 2 from ?), gives GDEV, AIC and SBC for specific models fitted to the
fish species data, and is used to answer the questions at the start of this section. The terms 1,

38

150 200 250
| | |

fish

100
!

R code on

page [38]

50

log(lake)

Figure 15: Fitted mean number of fish species against log lake area.

Sichel, SICHEL

SICHEL(mu = 19.37, sigma = 1.444, nu = -7.183)

0 20 40 6

0 80 100 120
4

T

0

Figure 16: Fitted Sichel distributions for observations (a) 7 and (b) 68.

pf. f(y)
003 004 005
| L L

0.02
L

0.01
L

0.00

v
Sichel, SICHEL

SICHEL(mu = 48.86, sigma = 1.444, nu = -1.104)

HHHHHHHH”HH|||||||||||||||u
40 60 80 100

120

0.020
1

R code on

page 33

pt. fly)
0015
L

0.010
L

0.005
L

0.000

T
20

¥

39

x and x<2> indicate constant, linear and quadratic terms, respectively, while the term cs(x, 3)
indicates a cubic smoothing spline with three degrees of freedom on top of the linear term x.
Table [1| includes additional distributions to those previously fitted.

The following four paragraphs are taken from Rigby et al. (2008). “Comparing models 2, 3 and
4 indicates that a quadratic model for log p is found to be adequate (while the linear and the
cubic spline models were found to be inappropriate here). Comparing model 1 and 3 indicates
that Y has a highly overdispersed Poisson distribution. Comparing model 3 with models 5
and 6 shows that either a linear model in x for log(o) or a different variance-mean relationship
from that of the negative binomial (NBI) [i.e. V [Y] = u + ou?] is required. In particular the
estimated v parameter in the negative binomial family (NBF) of model 6 is & = 2.9 suggesting a
possible variance-mean relationship V' [Y] = u + ou3. Modelling o in the NBF did not improve
the fit greatly, as shown by model 7.”

“A search of alternative mixed Poisson distributions included the Poisson-inverse Gaussian
(PIG), the Sichel (SI) and the Delaporte (DEL). The models with the best AIC for each distri-
bution were recorded” in Table[[lmodels 8 to 11. “A normal random effect mixture distribution
was fitted” (using 20 Gaussian quadrature points) “to the Poisson and NBI conditional dis-
tributions giving models 12 and 13, i.e. Poisson-Normal and NBI-Normal, respectively. ‘Non-
parametric’ random effects (effectively finite mixtures) (NPFM) were also fitted to Poisson
and NBI conditional distributions giving models 14 and 15”7, i.e. PO-NPFM(6) and NB-NPFM(2)
with 6 and 2 components, respectively. “Efron’s double exponential (Poisson) distribution was
fitted giving model 16” (DPO). “The best discretized continuous distribution fitted was a dis-
crete inverse Gaussian distribution giving model 17 (IGdisc), again suggesting a possible cubic
variance-mean relationship.” Note that the Table[[|model 14 gives results for model PO-NPFM(6)
instead of PO-NPFM(5) in Table 2 of Rigby et al. (2008).

“Overall the best model according to Akaike information criterion (AIC) is model 9, the Sichel
model, followed closely by model 11, a Delaporte model. According to the Schwarz Bayesian
criterion (SBC) the best model is model 17, the discretized inverse Gaussian distribution, again
followed closely by model 11.” In model 11, o was fixed to 1.

The following code reproduces the results of Table

library(gamlss.mx)

ml <- gamlss(fish“poly(x,2), data=species, family=PO, trace=FALSE)

m2 <- gamlss(fish™x, data=species, family=NBI, trace=FALSE)

m3 <- gamlss(fish“poly(x,2), data=species, family=NBI, trace=FALSE)

m4 <- gamlss(fish“cs(x,3), data=species, family=NBI, trace=FALSE)

m5 <- gamlss(fish™poly(x,2), sigma.fo="x, data=species, family=NBI,
trace=FALSE)

m6 <- gamlss(fish“poly(x,2), sigma.fo="1, data=species, family=NBF,
n.cyc=200, trace=FALSE)

m7 <- gamlss(fish™poly(x,2), sigma.fo="x, data=species, family=NBF,
n.cyc=100, trace=FALSE)

m8 <- gamlss(fish“poly(x,2), data=species, family=PIG, trace=FALSE)

m9 <- gamlss(fish“poly(x,2), nu.fo="x, data=species, family=SICHEL,
trace=FALSE)

m1@ <- gamlss(fish“poly(x,2), nu.fo="x, data=species, family=DEL,
n.cyc=50, trace=FALSE)

m11 <- gamlss(fish”poly(x,2), nu.fo="x, data=species, family=DEL,

40

sigma.fix=TRUE, sigma.start=1, n.cyc=50, trace=FALSE)

m12 <- gamlssNP(fish”poly(x,2), data=species, mixture = "gq", K=20,
family=PO, control=NP.control(trace=FALSE))

m13 <- gamlssNP(fish™poly(x,2), sigma.fo="x, data=species,
mixture = "gq", K=20, family=NBI,
control=NP.control(trace=FALSE))

m14 <- gamlssNP(fish”poly(x,2), data=species, mixture = "np"”, K=6,
tol=0.1,family=P0O, control=NP.control(trace=FALSE))

m15 <- gamlssNP(fish™poly(x,2), data=species, mixture = "np"”, K=2,
family=NBI, control=NP.control(trace=FALSE))

mi6 <- gamlss(fish“poly(x,2), nu.fo="x, data=species, family=DPO,
trace=FALSE)

library(gamlss.cens)

m17 <- gamlss(Surv(fish,fish+1,type= "interval2") "x+I(x"2),
sigma.fo="1, data=species,
family=cens(IG, type="interval"), trace=FALSE)

GAIC(m1, m2, m3, m4, m5, m6, m7, m8, m9, mi@, mi1, mi2, mi3, mi4,
m15, m16, m17)

df AIC
m9 6.00000 609.7268
m11 5.00000 610.6493
m17 4.00000 611.2793
mlQ0 6.00000 612.6593
m5 5.00000 614.9565
m13 6.00000 615.7281
m6 5.00000 616.0828
m7 6.00000 616.9229
m8 4.00000 621.3459
m3 4.00000 622.3173
m14 13.00000 622.8926
m12 4.00000 623.2455
m15 6.00000 623.8794
m4 5.99924 623.9083
m2 3.00000 625.8443
mi6 4.00000 655.2520
3

ml .00000 1855.2965

GAIC(m1, m2, m3, m4, m5, m6, m7, m8, m9, m1@, mi1, mi2, m13, mi4,
m15, m16, m17, k=log(70))

df AIC
m17 4.00000 620.2733
ml1 5.00000 621.8918
m9 6.00000 623.2178
mlQ0 6.00000 626.1503
m5 5.00000 626.1990
m6 5.00000 627.3253
m13 6.00000 629.2191

41

#i#
it
#it
##
##
#i#
it
#it
#it
##

Table 1: Comparison of models for the fish species data

Model Response 7 oc v GDEV df AlIC SBC
distribution

1 PO x<2> - - 18493 3 1855.3 1862.0

2 NBI X 1 - 619.8 3 625.8 632.6

3 NBI x<2> 1 - 614.3 4 622.3 631.3

4 NBI cs(x,3) 1 - 611.9 6 623.9 6374

5 NBI x<2> X - 605.0 5 615.0 626.2

6 NB family x<2> 1 1 606.1 5 616.1 627.3

7 NB family x<2> x 1 604.9 6 616.9 630.4

8 PIG x<2> 1 - 613.3 4 621.3 630.3

9 SICHEL x<2> 1 x 5977 6 609.7 623.2

10 DEL x<2> 1 x 600.7 6 612.7 626.2

11 DEL x<2> - X 600.6 5 610.6 621.9

12 PO-Normal x<2> 1 - 615.2 4 623.2 632.2

13 NBI-Normal x<2> x 1 603.7 6 615.7 629.2

14 PO-NPFM(6) x<2> - = 596.9 13 6229 652.1

15 NB-NPFM(2) x<2> 1 - 611.9 6 623.9 6374

16 DPO xX<2> X - 647.3 5 655.3 664.2

17 IGdisc X<2> 1 - 603.3 4 611.3 620.3
m8 4.00000 630.3399
m7 6.00000 630.4138
m3 4.00000 631.3113
mi2 4.00000 632.2395
m?2 3.00000 632.5898
m15 6.00000 637.3704
m4 5.99924 637.3975
mi4 13.00000 652.1230
mi6 4.00000 664.2460
m1 3.00000 1862.0420

wp(m9) ; title(”"(a)")
wp(m11); title("(b)")

The ‘best’ fitted models are m9 and m17, as suggested by AIC and SBC, respectively, Their
worm plots are shown in Figure indicating that both models have adequate fits. The fitted
parameters of the Sichel model m9 are shown below. They are obtained by refitting the model
using an ordinary quadratic polynomial in x for log(u), rather than the orthogonal quadratic

polynomial produced by poly(x,2):

mSI<- gamlss(fish™x+I(x"2), sigma.fo="1, nu.fo="x, data=species,

family=SICHEL, trace=FALSE)

summary (mSI)

HHE Kokkokkkkkkkokkokkkkokkk ks kokkokkokkokkok ok kokkokkokkokkkkkkkkkokkokkkkkkkkkkkkx
c("SICHEL", "Sichel")

Family:

#it

42

Figure

Deviation

#i#
##
i
##
##
##
#i#
#i#
##
##
1t
##
#i#
i
##
1t
#i#
##
i
##
#i#
##
#i#
##
##
##
1t

(a)

(b)

0 T 0 T
o | ; e | |
0 | 0 | 3
3 i 3 ‘

o Te-. | T RN | JPias

B N 3

o i o |

% > © § : & %
ol 0 & oo O %0 5 ol o qn L Qo °
S 5 W 3 g 3 Vo oo o

%] ? a |
""""""" ° o I o
wn wn
S S A °
T T %
e o
T T
@ | «
’T T - T T T T T T T T T T
-4 2 0 2 4 -4 2 0 2 4

Unit normal quantile

Unit normal quantile

Figure 17: Worm plots for the chosen model (a) m9 using AIC and (b) m17 using SBC.

Call:
gamlss(formula = fish ™ x + I(x"2), sigma.formula = "1,
nu.formula = “x, family = SICHEL, data = species,
trace = FALSE)
Fitting method: RS()
Mu link function: 1log
Mu Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 2.788203 0.171613 16.247 <2e-16 *x*xx*
X -0.006376 0.066870 -0.095 0.9243
I(x"2) 0.013957 0.005503 2.536 0.0137 *
Signif. codes:
0 '#xx' 0.001 '#x' 0.01 'x' 0.05 o1 " "1

Sigma link function: log
Sigma Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 0.3674 0.4632

0.793

0.431

Nu link function: identity
Nu Coefficients:

43

R code on

page [42]

##
#i#
#it
#it
##
##
#i#
it
#it
#it
##
##
#i
#it
#it
##
##

Estimate Std. Error t value Pr(>|t])
(Intercept) -11.5009 3.1110 -3.697 0.000455 **x
X 1.1410 0.3249 3.512 0.000822 **x*
Signif. codes:

0 '#xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

No. of observations in the fit: 70
Degrees of Freedom for the fit: 6

Residual Deg. of Freedom: 64
at cycle: 7
Global Deviance: 597.7268
AIC: 609.7268
SBC: 623.2178
Khkkkhkikkikkhkkhkkkkkkikikikkk **k)k **k)k AKEAKKRKRRkAkAA A AR AARAkhkAkhkhkikikikkkxkxk

16 Victims of crime.

The VictimsOfCrime data were introduced in the lecture.

R data file: VictimsOfCrime in package gamlss.data of dimensions 10590 x 2
variables
reported : whether the crime was reported in local media (0 =no, 1 =yes)
age : age of the victim

purpose: to demonstrate binary data smoothing.

1. Load the data and plot reported against age.

data(VictimsOfCrime)
plot(reported~age, data=VictimsOfCrime, pch="|")

2. Now use the different smoothers investigated in this chapter to fit smooth curves for age.
Note that the response is binary and therefore the binomial distribution (BI) is used in
the family argument. For example:

mi<- gamlss(reported”pb(age), data=VictimsOfCrime, family=BI)

The smoothers include pb, pbm, cy, scs, 1o, nn and tr.
3. Compare the results using AIC and SBC.

4. Plot the different fitted p (probability of a crime being reported in local media) for com-
parison. First study the behaviour of the P-spline based curves, i.e. pb(), pbm() and

cyQ, e.g.

44

e

n.n

plot(reported™age, data=VictimsOfCrime, type="n")
with(VictimsOfCrime, lines(fitted(m1)[order(age)l”
age[order(age)],col="red"”, 1lwd=2))
Compare the fitted curves of the P-splines and cubic splines.
Compare the fitted curves of the P-splines and the neural network.
Compare the P-splines with the decision trees fitted curves.

Check the residuals of model m1. Note that for binary responses, the function rqres.plot()
returns multiple realizations of the residuals.

rgres.plot(ml, ylin.all=.6)

. Obtain a multiple worm plot of the residuals.

wp(ml, xvar=age, n.inter=9)

45

	The Munich rent data.
	A simple example using the gamlss packages.
	Fitting a parametric model
	Fitting a nonparametric smoothing model
	P-splines
	Cubic Splines
	loess
	Neural Networks
	Extracting fitted values
	Modelling both and
	Diagnostic plots
	Fitting different distributions
	Selection between models

	The abdom data.
	The air quality data.
	Use the gamlss.demo package to plot distributions.
	Plotting different distributions.
	The DAX data.
	Turkish stock exchange.
	Parzen snowfall data
	The cable television data.
	The 2000 Presidential Election.
	EuStockMarkets data
	Munich rent data
	The stylometric data.
	The fish species data.
	Victims of crime.

